

This may be review, but it will help you on your quiz at the end of the class

Hebden Textbook pg. 199-201

What is electronegativity?

• Electronegativity: the ability of an atom to attract bonding electrons to itself.

Li	Be	в											С	N	0	F
	1.5	2.0												3.0	-	_
Na	Mg	Al											Si	\mathbf{P}	S	Cl
0.9	1.2	1.5											1.8	2.1	2.5	3.0
к	Ca	\mathbf{Sc}	Ti	V	\mathbf{Cr}	Mn	Fe	Co	Ni	\mathbf{Cu}	Zn	Ga	Ge	As	Se	\mathbf{Br}
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
Rb	\mathbf{Sr}	Y	\mathbf{Zr}	Nb	Mo	Te	\mathbf{Ru}	$\mathbf{R}\mathbf{h}$	Pd	Ag	\mathbf{Cd}	\mathbf{In}	Sn	\mathbf{Sb}	Te	Ι
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Cs	Ba	La-Lu	$\mathbf{H}\mathbf{f}$	Та	W	Re	Os	Ir	\mathbf{Pt}	Au	Hg	Tl	Pb	Bi	Po	At
0.7	0.9	1.1 - 1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2
Fr	Ra	Ac	$\mathbf{T}\mathbf{h}$	Pa	U	Np-N	0									
0.7	0.9	1.1	1.3	1.5	1.7	1.3							•			

Electronegativity Trend

- Electronegativity **increases** as you go from **left to right**
- Electronegativity increases as you go from bottom to top

Electronegativity Trend

4

Electronegativity Chart

You will be given these values on the test/ exam ③

Electronegativity Difference

• Electronegativity difference (Δ EN) is the difference in electronegativities of two bonded atoms or ions.

Example: The electronegativity difference for N-H:

$$\Delta$$
EN of N-H = 3.0 - 2.1
= 0.9

Practice Problems

What are the ΔEN of the following bonds:

- 1. C-H =
- 2. O-H =
- 3. H-H =
- 4. Ca-F =

Practice Problems

What are the ΔEN of the following bonds:

- 1. C-H = 2.5-2.1 = 0.4
- 2. O-H = 3.5 2.1 = 1.4
- 3. H-H = 2.1 2.1 = 0
- 4. Ca-F = |1.0 4.0| = 3.0

Electronegativity in Bonds

- Electronegativity can create localized charges in a molecule. These localized regions are called "**poles**" (**negative poles and positive poles**)
- Negative poles occur around the atoms with the higher electronegativity, because it tends to pull the electrons towards itself.
- **Positive poles** occur around the atoms with **lower electronegativity**, because they are do not attract the bonding electrons to themselves as much

Electronegativity in Bonds Bonds Covalent Bonds Ionic Bonds 1.7-2.0 Non-polar covalent **Polar covalent bond** bond 0.5-1.6 0-0.4

Electronegativity in Bonds

Molecular Polarity

- **Polar molecule:** a molecule in which there is an **uneven** distribution of electrons. This results in a positive charge at one end and a negative charge at the other end.
- Non-polar molecule: a molecule in which the electrons are equally distributed among the atoms, and therefore no localized charges.
- **Dipole moment:** contains a magnitude and direction in which charges are distributed. This is responsible for negative poles and positive poles

Dipole Moment has a Magnitude and a Direction

Determining Polarity

To figure out if a molecule is polar or non-polar, you must:

- 1. Draw it's structural formula
- 2. Look at the electronegativity differences of the individual bonds in the molecule

You try!

- Is HCl polar or non-polar?
- Is CO₂ polar or non-polar?

Is CO₂ polar or non-polar?

HCl is polar because there is unequal sharing of electrons with an electronegativity difference of 0.9

Is CO₂ polar or non-polar?

 CO_2 is non-polar because there is equal sharing of electrons because both oxygen atoms are pulling at carbon's electrons **equally**

Polarity & Symmetry

- •Even if the individual bonds in a molecule are polar bonds, the overall molecule can be non-polar if it is **symmetrical**.
- •If the molecule has **two** lines of symmetry, then the compound is non-polar

Polarity & Symmetry

CO₂ is non-polar, but what about H₂O?

They both have a central element bonded to two other atoms of the same element.

They are both symmetrical.

But what is different?

Polarity & Lone Pairs

- Lone pairs can affect the magnitude of the dipole moment since they are more localized.
- As a result, the central atom has a high electron density, affecting the polarity of the molecule.
- Therefore, water is a **polar** molecule

Homework

- See attached sheet
- Unit 4 Test will be next week so study mid-unit review sheet
- Additional work problems in Student Workbook page 117-120